Найти площадь треугольника, если одна сторона равна 20, а медианы, проведённый к двум...

0 голосов
36 просмотров

Найти площадь треугольника, если одна сторона равна 20, а медианы, проведённый к двум другим сторонам, 18 и 24 соответственно.


Геометрия (403 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.

Тогда площадь треугольника  АОВ равна S/3,

а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.

Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288

 

Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.

Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.

(69.9k баллов)