В прямоугольном треугольнике с углом 45 градусов и гипотенузой 8 см проведены средние...

0 голосов
470 просмотров

В прямоугольном треугольнике с углом 45 градусов и гипотенузой 8 см проведены средние линии. Найдите периметр треугольника, образованного средними линиями.


Геометрия (12 баллов) | 470 просмотров
Дан 1 ответ
0 голосов

1)
Данный треугольник - равнобедренный, т.к. в нем второй угол тоже 45 градусов.

Треугольник, образованный средними линиями, будет подобен исходному,
т.к. катеты нового в точке пересечения с серединой гипотенузы образуют прямой угол, а сами катеты равны половинам исходных.
Коэффициент подобия равен 2 (средняя линия равна половине стороны, которой она параллельна).

Длину катетов равнобедренного прямоугольного треугольника найдем по формуле:
с²=2а², где с - гипотенуза, а - катеты
64=2а²
а²=32
а=4√2 см
Периметр большего треугольника равен
8+2*4√2=8(1+√2) см
Периметр треугольника, образованного средними линиями, относится к периметру исходного так же , как средние линии относятся к сторонам, которым они параллельны.
т.е 1:2
Периметр получившегося треугольника -
8(1+√2):2=4(1+√2) см
--------------------
2)
В треугольнике медианы точкой пересечения делятся в отношении 2:1, считая от вершины.

Смотрим рисунок.
Точка пересечения медиан отмечена О, пересечение медианы со стороной АС - М
со стороной ВС - К.
Дано:
АВС- равнобедренный треугольник.
ВО=14
АО=25

ОМ=ВО:2=7 см
Рассмотрим треугольник АОМ.
Он прямоугольный, т.к. в равнобедренном треугольника медиана=биссектриса=высота,если проведена к основанию.
По теореме Пифагора найдем АМ - половину АС.
АМ =√(25²-7²)=24
АС=24*2=48
ВМ=ВО:2*3=14:2*3=21
АВ=√(24²+21²)=≈31,89 см
АВ=ВС=≈31,89


image