Интересная задача. Хотелось бы узнать формулу.Нужно найти число находящееся ** 2017...

0 голосов
39 просмотров

Интересная задача. Хотелось бы узнать формулу.
Нужно найти число находящееся на 2017 позиций


image

Алгебра (1.4k баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Судя по всему, должно получиться число, десятичная запись которого - это 2017 раз повторенное 2017?

Как приписать 2017 к концу какого-нибудь числа? Домножить это число на 10000 (10^4) и прибавить 2017. Например:

2017 * 10000 + 2017 = 20172017

Искомое число можно записать как (...(((2017 * 10000 + 2017)*10000 + 2017)*10000 + 2017)*10000 + ... ) * 10000 + 2017, где количество умножений = 2016

Обозначим s = 2017, k = 10000, n = 2016

(...(((s*k + s)*k + s)*k + s)*k + ...)*k + s = s * k^n + s*k^(n-1) + ... + s*k + s = {по формуле суммы геометрической прогрессии} = s * [k^(n+1) - 1]/[k - 1] =2017*\frac{10000^{2017}-1}{10000-1}

(8.5k баллов)
0

А, так 122333444... это одно число?

0

Тогда "найти цифру"

0

Редактировать ответ нельзя, напишу так

0

Сначала идут числа 1..9, занимающие по одной позиции, и всего под них отводится 1+2+3+...+9 = 10*9/2 = 45 позиций, 45 < 2017

0

Дальше двузначные 10..99, по две позиции, всего отводится 2*(10+11+12+..+99) = 2 * 109*90/2 = 9810; 9810 + 45 > 2017 - т.е. на 2017 позиции находится цифра какого-то двузначного числа

0

Найдем такое максимальное натуральное n, что 45 + 2*(10+11+12+...+n) < 2017, чтобы определить число, цифра которого находится на 2017ой позиции, а затем и саму цифру

0

2*(10+11+12+..+n) = 2*(n+10)(n-9)/2 = n^2 + n - 90 < 2017 - 45 ----> n^2 + n - 2062 < 0 ----> n = 44 (т.к. 44^2+44=1980, 45^2+45=2070) - можно найти перебором или решив квадратное уравнение

0

Получаем, что сначала цифры 1..9 занимают позиции 1..45, далее цифры, соответствующие числам 10..44, занимают позиции 46..{45 + 2*(10+11+12+...+44) = 45 + 54*35 = }1935, а следующие 2*45=90 позиций отводятся под числа 45 (2017 попадает в этот промежуток)

0

Причем цифра 4 стоит на позициях 1936, 1938, 1940... - на четных, а цифра 5 - на 1937, 1939... - нечетных. 2017 - нечетное - на позиции 2017 стоит цифра 5.

0

Спасибо))