Знайдіть площу чотирикутника ABCD, якщо А (0;4), В(2;6), С(4;4), D(2;2).

0 голосов
301 просмотров

Знайдіть площу чотирикутника ABCD, якщо А (0;4), В(2;6), С(4;4), D(2;2).


Геометрия (201 баллов) | 301 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

AB=sgrt((2-0)^2+(6-4)^2)=sqrt(4+4)=sqrt(8)=2sqrt(2)

BC=sgrt((4-2)^2+(4-6)^2)=sqrt(4+4)=sqrt(8)=2sqrt(2)

CD=sqrt((2-4)^2+(2-4)^2)=sqrt(4+4)=sqrt(8)=2sqrt(2)

DA=sqrt((0-2)^2+(4-2)^2)=sqrt(4+4)=sqrt(8)=2sqrt(2)

AC=sqrt((4-0)^2+(4-4)^2=sqrt(16)=4

BD=sqrt((2-2)+(2-6)^2)=sqrt(16)=4

В данном четырехугольнике все стороны равны, диагонали между собой тоже равны значит это квадрат

S=a^2=(2sqrt(2))^2=8

(56.3k баллов)